SHA-256 Hash Generator in Verilog HDL

Bartosz Rulka'? , Pawel Pieficzuk'?, Witold Pleskacz?
I ¥ ukasiewicz Research Network — Institute of Microelectronics and Photonics, Warsaw, Poland
2 Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Warsaw, Poland
e-mail: bartosz.rulka@imif.lukasiewicz.gov.pl

Abstract—An implementation of SHA-256 hash generator is
presented. A block has been described in Verilog HDL. A
generator code is written with basic logical and arithmetic
operations to create a easily-synthesizable block. A design process
a 512-bit block in 67 cycles. The generator is tested in simulations
with the test vectors and reference digests published by NIST.
The simulation testbench has been designed in SystemVerilog.
The design passed all test cases used.

Keywords—hash function, SHA-256, HDL, Verilog.

EXTENDED ABSTRACT

A SHA-256 is one of the SHA-2 hash function family
participant published by U.S. National Institute of Standards
and Technology (NIST). Thanks to the hardware implemen-
tation of this cryptographic function, the compatibility of
uploading software, transactions, etc. can be checked.The
SHA-256 generator block is designed in Verilog HDL using
the SHA-256 hash function. Generator after serving on the
data input to be hashed and the length of the message binary
record returns to output hash with a length of 32 bytes (256
bits).

The generator is created with 21 interconnected submodules
that execute appropriate logical and arithmetic operations (like
XOR, OR, AND, bit-shift, +, etc.) that control and operate the
course of subsequent rounds across the algorithm. The built-in
controller controls the block submodules in compliance with
the FIPS 180-4 standard. The entire block is resetable by
asynchoronous RESET input.

The generator starts processing at the rising edge of CLK
when the FLAG_IN flag is raised. It confirms that 512-bit (one
chunk) of input data MESSAGE and 64-bit input data length
were sent. Immediately, the number of 512-bit data blocks is
computed by division of MESSAGE_LENGTH by 2° = 512
(realized by the 9-bit shift). This OUT_CHUNK output value
is needed by the controller to control how many of the chunks
the generator needs to compute.

Preprocessing step is split into two steps, Parsing and
Padding. We decided to implement the parsing step in soft-
ware, but the padding inside hardware implementation. The
preparation of data and padding is done within three clock
cycles, but the padding itself is done in one clock cycle.
However, these steps are rather complex since these require
e.g. bit rotation by variable bit number.

Our preliminary synthesis and static timing analysis (STA)
tests with several CMOS standard libraries shown that the
critical path is mostly hidden in padding operation. This
issue needs further investigations, but we see two potential
approaches to deal with it:

« pipelining the operation in preprocessing;

o move the preprocessing operations to the software do-

main.

Main SHA256 loop block strictly follows the FIPS 180-
4 standard. Since the SHA-256 algorithm is designed with
simple arithmetic and logical operations (AND, OR, ROTR,
etc.), the implementation in any HDL is rather straightforward.

After the preprocessing, the following operations are per-
formed

o Hé%) values initialization;

. Wt(l) message schedule preparation;

e main compression loog);

7

« intermediate hash H'

update;

After processing a 512-bit block, the intermediate hash
values are used in the next round (with latter 512-bit data
block). When the entire message is processed, the final 8 32-bit
hash values are concatenated to the final 256-bit output hash
value. Simultaneously, the output flag FLAG_OUT is raised,
indicating the end of the calculations. Now the outer system
can collect the output hash. The generator computes one 512-
bit chunk of data in 67 clock cycles.

The generator tests start with reading all test vectors from
the text files provided by NIST.

Then, these vectors are transmitted to the MESSAGE input,
and the length of their binary notation to the MESSAGE_-
LENGTH input. After the calculations, the testbench save the
generator’s output hash value. After that, the calculated hash
is compared to the reference hash MD (Message Digest). If
the hashes are the same, the SUCCESS message is written in
the log file. Otherwise, the ERROR message is written in the
log file. The project can be extended by adding the standard
interface (such as Wishbone or AXI4-Lite) to improve the
adaptability to microprocessor architecture and verify a design
on an FPGA platform to perform experimental tests.



